ashirvad

by aliaxis

WORLD'S
 LARGEST SELLING UPVC COLUMN PIPES for Submersible Pumps

Pioneer in uPVC Column Pipes

Based at Bengaluru, India. Ashirvad Pipes Pvt. Ltd., is the Pioneer to develop the technology in 1995 to manufacture column pipes (also called Drop / Riser pipes) using uPVC. Today Ashirvad is the largest manufacturer and seller in the world for this product.

These pipes are being used successfully all over the world in over 40 countries to erect submersible borehole pumps up-to depths of 1000 feet. More than 3 million borewell pumps have been installed across the globe using Ashirvad Column Pipes.

With its unique patented technology of WIRELOCK ${ }^{\text {TM }}$ system, uPVC Column Pipes of Ashirvad offer the best replacement for Gl and HDPE Pipes.

Patented WIRELOCK ${ }^{\text {m }}$ Technology

Export to over 40 Countries

Ashirvad has produced over 130,000 km of uPVC Column Pipes

WORLD'S LARGEST SELIING UPVC COLUMN PIPES for Submersible Pumps

Index

01

About Ashirvad 09
Certifications 10
About Aliaxis 11
10 Assurances 16

02

Why Ashirvad Column Pipe 19 is the Best Choice?
Firsts From Ashirvad 20
Why uPVC Column Pipes? 21
Features of Ashirvad 22
uPVC column pipes
Load and Pressure Technical Chart 26

03

Specifications of Ashirvad
UPVC column pipes
04
Frictional Head Loss Calculation 29
Quality Control Procedures at Ashirvad 31
Handling/Storage and Bundling of Pipes 32
Important Tips 35
Pipe Selection 36
Installation Guide 37

05

Accessories - Top and Bottom 40
Adaptors/Connectors
Accessories - Jigs and Fixtures 41
FAQs 42

$\rightarrow \quad \rightarrow \quad v$

About Ashirvad

Ashirvad an Aliaxis group company, setup its Bengaluru unit in 1998 and is a wholly owned company of Aliaxis group. Aliaxis group is a global leading manufacturer and distributor of plastic fluid handling systems used in residential, commercial and industrial buildings. Aliaxis, headquartered in Brussels and is present over 45 countries with more than 100 manufacturing and commercial entities, employs over 16,000 people and generates more than 3 billion Euro (₹ 21, 600 crores approx) in annual sales.

Ashirvad has always been relentless in its commitment to quality and services. Ashirvad pipes is a leading manufacturer and supplier of CPVC, uPVC, SWR plumbing systems and also the pioneer in designing and manufacturing of uPVC column pipes, which are used in the erection of submersible borehole pumps. Today Ashirvad Pipes is the world's largest manufacturer of uPVC column pipes and successfully exporting to 40+ countries. The CPVC Hot and Cold plumbing system is manufactured in collaboration with Lubrizol, USA.

Ashirvad is an ISO 9001:2015, ISO 14001:2015 and ISO 45001:2018 certified company with a constant endeavour towards achieving the highest level of customer satisfaction.

Ashirvad, with a determination to be a one-stopshop for Plumbing, Agriculture, Sanitary and Fire Safety solutions, has recently expanded its product range and successfully introduced Agri Pipe, Casing Pipe, Blazemaster Fire Sprinklers.

Capabilities:

- Manufacturing capacity of more than 2,00,000 MT per annum
- Total factory area of 50 acres
- $500+$ Strong Sales \& marketing staff across India
- Strong team of 205 at corporate office
- Over 4,500 manufacturing workforce
- 18 warehouses, 1,100 distributors, 53,000 dealers across India
- Exporting Column Pipes to more than 40countries
- 2 factories in Bengaluru and another one in Bhiwadi (Rajasthan) near Delhi

In 2007, Ashirvad won the National Award for "OUTSTANDING ENTREPRENEURSHIP IN MEDIUM ENTERPRISES"
The award was presented by the Prime Minister of India.

WCRC Leaders Summit - 2014 Ashirvad Pipes
"One Of The 100 Fastest Growing Marketing Brands In Asia"
(Evaluated and selected by KPMG) The Global Audit Firm

EXPORT EXCELLENCE - 2015
"Ashirvad Pipes" "BEST MANUFACTURER EXPORTER AWARD" Large Category - Silver

STATE EXPORT EXCELLENCE 2014-15 \& 2015-16
"CHEMICALS \& PLASTICS"
Medium / Large Enterprise

Certifications

About Aliaxis

Aliaxis group is a leading global manufacturer and distributor of plastic fluid handling systems used in residential, commercial and industrial buildings.

Head quartered in Brussels, Belgium. Aliaxis is present in over 45 countries, has more than 100 manufacturing and commercial entities and employs over 16,000 people.

Aliaxis leverages local and global knowledge of the industry as well as regulations and building habits to provide consistently excellent customer service through distribution partners to builders, installers, infrastructure contractors and others. The group is in the Indian plumbing and sanitary market through a partnership with Ashirvad Pipes since 2013.

10 ASSURANCES

\#01
 STATE OF THE ART MANUFACTURING FACILITY
 \#02
 ADVANCED MACHINERY
 FOR SUPERIOR QUALITY

\#03
 ADVANCED MATERIAL HANDLING SYSTEMS

$\overline{\mathrm{OOOO}}$

\#04
100\% INCOMING RAW
MATERIAL INSPECTION

\#05
HIGH DIMENSIONAL ACCURACY TO MAINTAIN QUALITY OF
EACH PIPE, TO ENSURE 100\%
 CUSTOMER SATISFACTION

Ashirvad's stringent quality checks ensure premium products and maximum customer satisfaction

\#06

STRINGENT QUALITY CHECKS AT EVERY LEVEL OF PRODUCTION

100\% FINISHED GOODS INSPECTION

```
#07
```

\#07
NSPECTION

```
NSPECTION
```


\#08
EVERY BATCH OF PRODUCTS LAB TESTED

\#09
QUALITY PARAMETERS
ARE SAME FOR DOMESTIC AND EXPORT SUPPLIES

\#10
REGULAR EXTERNAL LAB TESTING OF PRODUCTS
 IN INDIA

WATER FROM THE SOURCE

Ashirvad Pipes is perhaps the only company in India to provide end to end solutions for Smart Water Management. From manufacturing uPVC Column Pipes for installation of borewell pumps, to providing the best quality SWR pipes (for disposing rain and waste water), today Ashirvad is considered to
be the industry leader and a one stop shop for plumbing, drainage and sanitary products across the spectrum.

Why Ashirvad uPVC Column Pipe is the best choice?

Ashirvad column pipes are available in various sizes starting from 1 inch to 6 inch in diameter. These are made of uPVC and are non-corrosive, Hi-tech, Hi-tensile pipes, having a successful installation track record of over 15 years across the globe.

Thick and thin technology to ensure uniform thickness across the length of the pipe and the square threads for extra strength.

The pipes come in various types like Standard, Heavy and Super Heavy and a quick look at the "Pipe Selection Chart" will clearly indicate the best type to be used for any particular application, depending upon the depth of the bore-well and the type of pump head.

Pioneer of uPVC Column Pipes

30 lakhs successful installations globally since 1995

Biax ${ }^{\text {TM }}$ Technology for Extra Pipe Strength

Exporting to more than 40 Countries

More than 130,000 km of Column Pipes sold

Patented WIRELOCK ${ }^{\text {TM }}$ for Pump Safety

Successful maintenance free - track record of over 20 years

Recommended for installations upto 1000*ft

Firsts From Ashirvad

PVC PIPE JOINT SYSTEM WITH COUPLER AND WIRELOCK ${ }^{\text {TM }}$ FOR EXTRA PUMP SAFETY
 Design registered and patented in India.
 Patent also registered in Europe, South Africa and Nigeria.

In this unique WIRELOCK ${ }^{\text {TM }}$ system developed by Ashirvad Pipes, the coupler is fitted to the pipe and locked with stainless steel wire. It eliminates the chances of coupler loosening and column slipping during dismantling process. It also avoids excessive tightening of coupler with pipe. Ashirvad alone has this unique gripping system.

uPVC RISER / DROP PIPE

Ashirvad Pipes was the first to develope Column Pipes for submersible pumps using uPVC.

COUPLING

Installation of pipes becomes very easy due to threaded coupling. Ashirvad has the easiest installation system.

MULTI SEAL RING

The Multi seal ring, sealant and gripping system provides leak proof fitting and also absorbs the vibrations of the pump. This results in extended life of motor and pump bearings. Ashirvad also has a unique gripping system.

BIAX ${ }^{\text {TM }}$ TECHNOLOGY FOR SUPER STRENGTH

This technique has been developed for the first time in India by Ashirvad Pipes, wherein the uPVC molecular chain gets linearly and diametrically oriented during the process of installation. This results in higher impact strength.

HIGHLIGHTS

Exports to over 40 countries and more than 3 million successful installations across the world.

Why uPVC Column Pipes?

Sr. No.	Property Requirement For Drop/Riser Pipes	Ashirvad Pipes	Mild Steel Or Galvanized Steel Pipes	HDPE Pipes
1	Rigidity requirement so that Drop / Riser pipes and pump is vertical for proper NRV function.	Pipes are rigid	Pipes are rigid	Pipes are flexible hence not suitable for Drop/Riser application. Pipes are also soft and over long term use with heavy pump set they elongate and lose their shape permanently. In the process of elongation they become thin and break.
2	Strong threaded joints required for holding the column and submersible pump load.	Specially designed square threads have very high load holding capacity and these threads do not corrode or rust or deteriorate.	The threads are prone to corrosion and rusting. Since the threads do not have a layer of Galvanization, after 2-3 years of use the old thread have to be cut out and new threads have to be made on the pipes on lathe machine due to rusting problem. Money and effort is spent in making new threads and the user ends up with a shorter length of pipe.	The threads cannot be formed as these pipes are soft and therefore the jointing of the pipe with the pump or at the top with any fixture is simple push type joint.
3	Leak proof joints required for saving every drop of water.	Special rubber seals are provided with the thread to ensure 100% leak proof at high pump pressure.	These threads are not pressure tight and do not have any rubber sealing system. Therefore not leak proof.	Threads are weak and open up during use.
4	Smooth Internal Surface.	Since the internal surface is very smooth therefore head loss due to friction is low and water discharge is more by 10\%-30\%	Internal surface is rough and head loss is high.	Internal surface not as smooth as Ashirvad Pipes.
5	Light weight of pipe and ease in installation.	Pipes come in 3 metres standard length and are light weight for easy handling both during pump fitment and also removal.	Pipes are heavy and great effort is required for installation and removal of pumps. In deeper bore wells the column of pipe becomes very heavy and are prone to accidents during handling.	Becomes hard and cannot be rolled back during removal. Pulling with tractor disturbs the crop.
6	Long life	Ashirvad Drop/Riser pipes do not react with acidic or alkaline water and also have a very long life inside the bore well.	Steel pipes are prone to rust, corrosion and ultimately get damaged and have to be replaced very quickly.	Strength of material being very less, very thick pipes are required for high pressure application. This reduces the internal area for water flow considerably. Hence thin pipes are used for high pressure application and the pipes burst in 2-3 yrs.

The above demonstrates the advantages of Ashirvad high tensile, high impact uPVC Riser / Drop Pipe over the conventional galvanized steel pipes and HDPE pipes.

Features of Ashirvad uPVC Column Pipes

PVC PIPE JOINT SYSTEM WITH COUPLER AND WIRELOCK ${ }^{\text {T }}$ FOR EXTRA PUMP SAFETY
Design Registered - Patent registered in India. Also patent registered in USA, Europe, South Africa, Australia and Nigeria

Wirelock coupler design: (WIRELOCK ${ }^{\text {TM }}$: For your Pump Safety) The couplers are fitted on the pipe sizes from 33 mm OD (1") up to 165 mm OD (6"). The couplers are locked with a special stainless steel wire to ensure that during installation and removal of pumps, the coupler does not come out, resulting in pipes slippage. The wirelock system with the unique design made only by Ashirvad Pipes is a new development adding value to the product.

MANUFACTURING PROCESS

Ashirvad uses the latest extrusion technology and quality control procedures and has a fully equipped laboratory, ensuring the best quality of pipes and perfect inner/outer dimensions. The WIRELOCK ${ }^{\top M}$ mechanism is an in-house development by Ashirvad R and D team, which is a constant endeavour to always be first and best.

SPECIAL FORMULATION

Ashirvad pipes are made with specially designed formulation so that pipes are capable of handling both internal hydro static pressure as well as vertical tensile load due to the column water and pump weight. The special formulation ensures that the threads do not get brittle and break or chip even after loosening and tightening several times during its life span. Special raw materials are processed and used in combination with the latest extrusion technology to make these pipes.

DUAL FUNCTION OF ASHIRVAD DROP / RISER PIPE

Ashirvad Drop / Riser pipes have a dual function to perform. On one hand it has to withstand the pump delivery hydro static pressure, which
is maximum in the first pipe connected to the pump and may be as high hand it has to withstand the pump delivery hydro static pressure, which
is maximum in the first pipe connected to the pump and may be as high as $35 \mathrm{Kg} / \mathrm{cm}^{2}$ and on the other hand, the top most pipe bears the load of the entire column filled with water and pump which may range up to 2 tons. This dual type of loading application makes this product unique and requires special manufacturing techniques which is available only with Ashirvad.

ADVANTAGES OF
ASHIRVAD UPVC
RISER / DROP PIPE

- Long life
- Power saver
- Light in weight
- 10 to 30% extra water*
- Easy installation
- No electrolytic deposition
- Cost saver
- No rusting or corrosion

THICK AND THIN

Unique thick and thin construction of pipes: This innovative technique for making pipes thicker in the threading end to compensate for material removal due to threads is an innovation by Ashirvad.
As depicted the residual thickness in the end part after removal of thread is the same as barrel thickness. Therefore, the pipe strength remains the same.
This technique saves on the raw material consumption and at the same time, provides higher strength to the pipes.

SQUARE TYPE THREADS

The joints at the pipes have been specially designed with square threads to ensure proper gripping and nullify the chance of slipping. These threads are high friction threads, which do not open even on constant forward and reverse torque generated by starting and stopping of the pump. These threads are made on special CNC machines, with high accuracy tools, to ensure perfect dimensions and good and easy fitment. All threads are checked thoroughly with fitment gauges to ensure 100\% accuracy.

MULTI SEAL RING (Design Registered)

Inner and outer multi seal rings are provided in the permanent and temporary sides of the pipe, which ensures 100% leak proof joint. The multi seal ring is visually appealling in size \& shape. This design is registered by Ashirvad. It can also withhold higher press uses.

BI-AXIAL ORIENTATION

Ashirvad has developed a unique Bi -axial orientation technique used during pipe extrusion, which gives higher drop impact and notch impact strength to the pipes. This orientation technique is a result of constant Research and Development at Ashirvad.

Load and Pressure Technical Chart

TYPE AND SIZE
OD - Outside Diameter
DN - Nominal Diameter
1 inch (OD: 33 mm, DN: 25 mm)

Standard	1900	1100	30	300
11/4 inch (OD:42 mm, DN: 32 mm)				
Standard	2550	1500	25	250
Heavy	3100	1800	35	350
Super Heavy - $40 \mathrm{~kg} / \mathrm{cm}^{2}$ (optional)	3150	1850	40	400
Super Heavy - $45 \mathrm{~kg} / \mathrm{cm}^{2}$ (optional)	3500	2070	45	450
1112 inch (OD:48 mm, DN: 40 mm)				
Standard	2950	1700	26	260
Heavy	4050	2350	35	350
Super Heavy - $40 \mathrm{~kg} / \mathrm{cm}^{2}$ (optional)	4100	2400	40	400

2 inch (OD: 60 mm, DN: 50 mm)

Standard	3600	2100	20	200
Heavy	4700	2800	27	270
Super Heavy	5650	3350	35	350

2¼ inch (OD: 63 mm , DN: 50 mm)

Heavy Plus	5740	3380	30	300
2½ inch (OD: 75 mm , DN: 65 mm)				
Standard	4650	2700	16	160
Standard Plus	5900	3500	21	210
Heavy	7000	4200	26	260
Super Heavy - $35 \mathrm{~kg} / \mathrm{cm}^{2}$	9000	5300	35	350
Super Heavy - $40 \mathrm{~kg} / \mathrm{cm}^{2}$ (optional)	10300	6100	40	400

3 inch (OD: $88 \mathrm{~mm}, \mathrm{DN}: 80 \mathrm{~mm}$)

Standard	6800	4000	17	170
Standard Plus	8200	4850	21	210
Heavy	9600	5650	26	260
Super Heavy	12400	7300	35	350

$31 / 2$ inch (OD: 100 mm, DN: 89 mm)

Heavy Plus $-30 \mathrm{~kg} / \mathrm{cm}^{2}$	14680	8640	30	300
4 inch (OD: 113 mm , DN: 100 mm)				
Standard	10000	5900	15	150
Standard Plus	13000	7650	21	210
Heavy	15900	9350	26	260
Super Heavy	20600	12150	35	350

5 inch (OD: 140 mm , DN: 125 mm)

Standard	16400	9650	16	160
Standard Plus	20800	12250	21	210
Heavy	24000	14600	26	260
Super Heavy	30500	18600	35	350

6 inch (OD: $165 \mathrm{~mm}, \mathrm{DN}: 150 \mathrm{~mm}$)

Heavy	40000	23500	26	260

Pump total delivery head is available in the pump performance chart supplied by the pump manufacturer. It is the maximum head of pump at which discharge becomes zero(nil). We can manufacture other pressure rating pipes upon request.

Typical Load Technical Chart

Technical comparison for total load on the top pipe and ultimate breakage load of Ashirvad standard pipes. This is just an indication of the loads to explain that in the design of the pipes adequate factor of safety has been considered.

Size	Weight of 500 ft. of Pipe (kg) (a)	Weight of Water Column in 500 ft Pipe (kg) (b)	Maximum Weight of Pump (kg) (c)	Total Weight (kg) $(a+b+c)$	Ultimate Breaking Load of Ashirvad Riser / Drop Pipes (kgf)
33 mm OD (1")	105	85	100	290	1900
42 mm OD ($11 / 4^{\prime \prime}$)	129	147	100	376	2550
$48 \mathrm{~mm} \mathrm{OD}\left(11 / 2^{\prime \prime}\right)$	154	189	125	468	2950
60 mm OD (2")	199	321	150	670	3600
75 mm OD ($21 / 2^{\prime \prime}$)	254	529	200	983	4650
88 mm OD (3")	350	717	250	1317	6800
113 mm OD (4")	527	1216	300	2043	10000
140 mm OD ($5^{\prime \prime}$)	865	1835	500	3200	16400
$165 \mathrm{~mm} \mathrm{OD} \mathrm{(6")}$	1850	2224	1000	5074	40000

NOTE: The total weight of assembly is considerably reduced due to buoyancy when immersed in bore well water. This is not considered above.

SERVICE CONDITION

These pipes give the best service in bore wells which have full casing, or bore wells which are free from loose boulders and stones. In such areas, where loose boulders and stones are prevalent then full casing or slightly larger bore should be made so that the pump does not get stuck.
Bore collapse problem occurs in some areas and it can also be tackled by giving full casing pipes. This happens in areas with loose soil and silt. Care should also be taken during drilling of the bore wells that it is vertical without any bend.

NOTE: Any Design and Specifications are subject to change without any prior notice.

Specifications of Ashirvad uPVC Column Pipes

Size and Type	Wall Thickness in mm			Nominal Effective	Portion
OD - Outside Diameter DN - Nominal Diameter	End Min/Max	Barrel Min/Max	OD in mm Min/Max	in mm	$\begin{aligned} & \text { in } \\ & \mathrm{mm} \end{aligned}$
1 inch (OD: 33 mm , DN: 25 mm)					
Standard (Socket Type)	5.20/6.10	3.10/3.95	32.6/33.2	$2998 \pm 3 \mathrm{~mm}$	200-200
1114 inch (OD:42 mm, DN: 32 mm)					
Standard (Socket Type)	5.45/6.45	3.35/4.15	41.5/42.2	$2998 \pm 3 \mathrm{~mm}$	200-200
Heavy (Socket Type)	6.65/7.45	4.55/5.45	41.5/42.2	$2998 \pm 3 \mathrm{~mm}$	200-200
Super Heavy - 40 (Socket Type)	7.80/8.50	5.30/5.55	41.5/42.2	$2998 \pm 3 \mathrm{~mm}$	250-250
Super Heavy - 45 (Socket Type)	8.50/9.00	6.00/6.50	41.5/42.2	$2998 \pm 3 \mathrm{~mm}$	250-250
1112 inch (OD:48 mm, DN: 40 mm)					
Standard (Socket Type)	6.05/7.25	3.95/4.85	47.5/48.2	$2998 \pm 3 \mathrm{~mm}$	200-200
Heavy (Socket Type)	7.30/8.60	5.20/6.10	47.5/48.2	$2998 \pm 3 \mathrm{~mm}$	200-200
Super heavy	8.50/8.85	6.00/6.25	47.50/48.2	$2998 \pm 3 \mathrm{~mm}$	250-250
2 inch (OD: $60 \mathrm{~mm}, \mathrm{DN}: 50 \mathrm{~mm}$)					
Standard (Socket Type)	6.40/7.90	3.90/5.00	59.5/60.2	$2998 \pm 3 \mathrm{~mm}$	200-200
Heavy (Socket Type)	7.80/9.70	5.30/6.60	59.5/60.2	$2998 \pm 3 \mathrm{~mm}$	200-200
Super Heavy (Socket Type)	9.00/10.60	6.50/7.80	59.5/60.2	$2998 \pm 3 \mathrm{~mm}$	200-200
2¼ inch (OD: 63 mm , DN: 50 mm)					
Heavy Plus (Socket Type)	8.70/9.10	6.20/6.50	62.7/63.0	$2998 \pm 3 \mathrm{~mm}$	250-250
21⁄2 inch (OD: $75 \mathrm{~mm}, \mathrm{DN}$: 65 mm)					
Standard (Socket Type)	6.50/8.00	4.00/5.10	74.5/75.2	$2998 \pm 3 \mathrm{~mm}$	200-200
Standard Plus (Socket Type)	7.90/9.20	5.20/6.20	74.5/75.2	$2998 \pm 3 \mathrm{~mm}$	200-200
Heavy (Socket Type)	9.00/10.70	6.30/7.60	74.5/75.2	$2998 \pm 3 \mathrm{~mm}$	200-200
Super Heavy - 35 (Socket Type)	10.80/12.70	8.30/9.80	74.5/75.2	$2998 \pm 3 \mathrm{~mm}$	200-200
Super Heavy - 40 (Socket Type)	12.30/14.40	9.70/11.40	74.5/75.2	$2998 \pm 3 \mathrm{~mm}$	200-200
3 inch (OD: $88 \mathrm{~mm}, \mathrm{DN}: 80 \mathrm{~mm}$)					
Standard (Socket Type)	7.50/9.00	5.00/6.40	87.5/88.2	$2998 \pm 3 \mathrm{~mm}$	200-200
Standard Plus (Socket Type)	8.70/10.30	6.20/7.30	87.5/88.2	$2998 \pm 3 \mathrm{~mm}$	200-200
Heavy (Socket Type)	9.80/11.90	7.30/9.00	87.5/88.2	$2998 \pm 3 \mathrm{~mm}$	200-200
Super Heavy (Socket Type)	12.40/14.80	9.70/11.70	87.5/88.2	$2998 \pm 3 \mathrm{~mm}$	200-200
3112 inch (OD: 100 mm , DN: 89 mm)					
Heavy Plus (Socket Type)	13.00/15.10	10.00/11.70	99.5/100.2	$2998 \pm 3 \mathrm{~mm}$	250-250
4 inch (OD: 113 mm , DN: 100 mm)					
Standard (Socket Type)	8.20/9.80	5.70/7.20	112.5/113.2	$2998 \pm 3 \mathrm{~mm}$	200-200
Standard plus (Socket Type)	10.40/12.20	7.60/9.10	112.5/113.2	$2998 \pm 3 \mathrm{~mm}$	200-200
Heavy (Socket Type)	12.20/14.30	9.40/11.50	112.5/113.2	$2998 \pm 3 \mathrm{~mm}$	200-200
Super Heavy (Socket Type)	15.10/17.80	12.60/15.00	112.5/113.2	$2998 \pm 3 \mathrm{~mm}$	200-200
5 inch (OD: 140 mm , DN: 125 mm)					
Standard (Socket Type)	10.30/12.60	7.60/9.10	139.5/140.2	$2998 \pm 3 \mathrm{~mm}$	250-250
Standard plus (Socket Type)	13.30/15.70	9.80/11.70	139.5/140.2	$2998 \pm 3 \mathrm{~mm}$	250-250
Heavy (Socket Type)	15.32/18.10	11.90/14.20	139.5/140.2	$2998 \pm 3 \mathrm{~mm}$	250-250
Super Heavy (Socket Type)	19.00/22.60	15.60/18.80	139.5/140.2	$2998 \pm 3 \mathrm{~mm}$	250-250
6 inch (OD: $165 \mathrm{~mm}, \mathrm{DN}: 150 \mathrm{~mm}$)					
Heavy (Socket Type)	16.50/17.00	13.80/14.50	164.7/165.5	$2998 \pm 3 \mathrm{~mm}$	250-250

Frictional Head Loss
 Calculation

The height to which the water is to be pumped has to be precisely estimated. This is most important specially on long inclined terrains. The length of the pipeline and the height to which the water is to be pumped together with the depth to low water level and frictional head loss in pipes, decide the total head of the pumpset.

Approximate frictional head loss in Ashirvad uPVC column pipes in metre/100 m

Size Type (inch)		Discharge of pump in Ipm											
		40	60	80	100	120	150	180	240	300	360	400	500
1	Standard	5.1657	10.9458	18.6481	28.1911	39.5145	59.7356	83.7292	142.6473	215.6458	302.2627	367.3901	555.3987
$11 / 4$	Standard	1.2706	2.6924	4.5869	6.9342	9.7194	14.6932	20.5949	35.0871	53.0426	74.3478	90.3672	136.6118
	Heavy	1.8136	3.8430	6.5472	9.8976	13.8732	20.9726	29.3966	50.0822	75.7113	106.1217	128.9873	194.9954
	Super Heavy (40 Kg) (optional)	2.4011	5.0877	8.6678	13.1035	18.3667	27.7657	38.9182	66.3039	100.2343	140.4948	170.7667	258.1549
	$\begin{aligned} & \text { Super Heavy } \\ & (45 \mathrm{Kg}) \end{aligned}$	3.0397	6.4409	10.9732	16.5886	23.2516	35.1504	49.2690	83.9383	126.8929	177.8612	216.1842	326.8145
1112	Standard	0.6694	1.4185	2.4167	3.6534	5.1208	7.7413	10.8507	18.4861	27.9461	39.1711	47.6111	71.9757
	Heavy	0.9247	1.9594	3.3382	5.0465	7.0734	10.6932	14.9883	25.5351	38.6025	54.1077	65.7660	99.4212
	Super Heavy (40 Kg) (optional)	1.1916	2.5248	4.3015	6.5028	9.1147	13.7790	19.3135	32.9040	49.7423	69.7220	84.7447	128.1120
2	Standard	0.1833	0.3884	0.6618	1.0005	1.4023	2.1199	2.9714	5.0623	7.6529	10.7268	13.0380	19.7101
	Heavy	0.2415	0.5117	0.8717	1.3178	1.8472	2.7924	3.9140	6.6682	10.0807	14.1297	17.1742	25.9629
	Super Heavy	0.3099	0.6566	1.1187	1.6912	2.3705	3.5836	5.0230	8.5575	12.9367	18.1329	22.0399	33.3186
$21 / 4$	Heavy Plus	0.2142	0.4538	0.7731	1.1688	1.6382	2.4766	3.4714	5.9140	8.9404	12.5316	15.2317	23.0264
21/2	Standard	0.0530	0.1123	0.1913	0.2892	0.4054	0.6128	0.8590	1.4635	2.2124	3.1010	3.7691	5.6980
	Standard Plus	0.0640	0.1356	0.2310	0.3492	0.4894	0.7399	1.0371	1.7668	2.6710	3.7438	4.5505	6.8791
	Heavy	0.0760	0.1611	0.2744	0.4148	0.5814	0.8790	1.2320	2.0990	3.1731	4.4477	5.4060	8.1724
	Super Heavy $35 \mathrm{~kg} / \mathrm{cm}^{2}$	0.1048	0.2221	0.3783	0.5719	0.8017	1.2119	1.6987	2.8940	4.3749	6.1322	7.4535	11.2677
	Super Heavy $40 \mathrm{~kg} / \mathrm{cm}^{2}$	0.1345	0.2849	0.4854	0.7338	1.0285	1.5549	2.1794	3.7130	5.6130	7.8676	9.5628	14.4564
3	Standard	0.0250	0.0529	0.0902	0.1364	0.1911	0.2890	0.4050	0.6900	1.0432	1.4622	1.7772	2.6867
	Standard Plus	0.0292	0.0618	0.1053	0.1591	0.2231	0.3372	0.4726	0.8052	1.2173	1.7062	2.0739	3.1351
	Heavy	0.0337	0.0715	0.1218	0.1841	0.2581	0.3902	0.5469	0.9318	1.4086	1.9743	2.3998	3.6278
	Super Heavy	0.0475	0.1006	0.1714	0.2591	0.3632	0.5491	0.7696	1.3111	1.9821	2.7782	3.3768	5.1049
$31 / 2$	Heavy Plus	0.0224	0.0474	0.0808	0.1221	0.1711	0.2587	0.3626	0.6178	0.9340	1.3091	1.5912	2.4054
4	Standard	0.0068	0.0144	0.0245	0.0371	0.0520	0.0786	0.1101	0.1876	0.2837	0.3976	0.4833	0.7306
	Standard Plus	0.0082	0.0175	0.0298	0.0450	0.0631	0.0954	0.1337	0.2278	0.3444	0.4827	0.5867	0.8870
	Heavy	0.0099	0.0210	0.0358	0.0542	0.0759	0.1148	0.1609	0.2741	0.4143	0.5808	0.7059	1.0671
	Super Heavy	0.0139	0.0295	0.0503	0.0761	0.1066	0.1612	0.2259	0.3849	0.5819	0.8156	0.9913	1.4987
5	Standard	0.0025	0.0053	0.0090	0.0135	0.0190	0.0287	0.0402	0.0686	0.1036	0.1453	0.1766	0.2669
	Standard Plus	0.0030	0.0064	0.0108	0.0164	0.0230	0.0347	0.0487	0.0829	0.1254	0.1757	0.2136	0.3229
	Heavy	0.0036	0.0076	0.0129	0.0195	0.0273	0.0413	0.0579	0.0986	0.1491	0.2090	0.2541	0.3841
	Super Heavy	0.0049	0.0105	0.0178	0.0270	0.0378	0.0571	0.0801	0.1364	0.2062	0.2891	0.3513	0.5311
6	Heavy	0.0015	0.0033	0.0056	0.0085	0.0118	0.0179	0.0251	0.0428	0.0647	0.0906	0.1101	0.1665

Approximate frictional head loss in steel pipe head loss in metre per / 100 meter

Pipe Nominal Bore

Q Imp (nominal dia mm)	40	Discharge in Ipm			
40	1.15	50	65	80	100
60	2.57	0.38	0.10	0.03	0.01
80	4.58	1.50	0.22	0.08	0.03
100	7.16	2.36	0.40	0.14	0.05
120	10.30	3.38	0.63	0.22	0.07
150	16.10	5.30	1.42	0.51	0.32
180	23.20	7.60	2.05	0.11	
240	64.45	13.52	3.64	1.29	0.17
300		21.12	5.69	2.01	0.42
360		30.41	8.19	2.90	0.66
400		37.55	10.11	3.58	0.95
500			15.80	5.59	1.17
					1.83

Technical chart - 4 gives friction losses per 100 metre of pipeline for Ashirvad Riser / Drop Pipes and Technical chart - 5 give frictional head loss for steel pipes. From table it can be seen that higher diameter pipes have lower frictional head loss. This helps to reduce load on pump and thus increase its life. Following examples will help you to calculate friction head for different length.

Calculation

1. Head Loss and discharge comparison for 2" (60 mm OD) Ashirvad Standard column pipes and Gl pipe for installation at 450 ft (137 metres) depth.

Considering that water will not be lifted higher than the ground level.
(i) Head Loss due to depth of pump $=137$ meters (450 ft) both in case of Ashirvad column pipes and steel pipes.
(ii) Head Loss due to friction in Ashirvad column pipes as per Chart: 4 taking working range of discharge as $18 \mathrm{~m}^{3} / \mathrm{hr}=300 \mathrm{lpm}$.

As per Chart: 4 frictional head loss is 7.71 meters / 100 meters of depth for 2"(60 mm Ashirvad Standard Pipes)

For 137 meters frictional Head loss 137/100 $\times 7.71=10.56$ meters
Total head load on pump with Ashirvad column pipe $=137+10.56=147.56$ meters
(ii) Head loss due to friction in steel pipes

As per Chart: 5, friction loss $=21.12$ mtrs $/ 100 \mathrm{mtrs}$. For 137 meters, frictional head loss $=137 / 100 \mathrm{x}$ $21.12=28.93$ mtrs. Total head loss on pump with steel pipes $=137+28.93=165.93 \mathrm{mtrs}$.

In the same working condition the head load on pump is different than in the case of Ashirvad column pipes and steel pipes. As per pump chart 10% to 30% extra water discharge is available with Ashirvad Column Pipe in comparison to steel pipes depending upon depth and discharge of pump. This means great power saving and less pumping time.
2. It has been debated that Ashirvad heavy pipes have lesser Internal diameter because of more thickness and therefore water discharge will be less in comparison with steel pipe.

Comparison of Chart: 4 and 5 shows that Ashirvad Super Heavy Pipes also have lesser frictional loss compared to steel pipes. Even 2" super heavy pipe has almost 33% lesser frictional loss than 2" steel pipe.

ashirvad

Quality Control Procedures At Ashirvad

The pipes and couplers manufactured at Ashirvad, follow a stringent quality control process before being rolled out to the market, in order to supply a defect free system to its users.

Test	
Short Term	
Hydrostatic Pressure Test	

Chart: 6

Colour coding of pipes

The colour with which the specification of the pipe is printed (on the pipe) varies with different pipe classes. The colour coding for different classes is given below.

Class of Pipe	Printing Colour	
V4-12.5	Orange	
V4-15	Purple	
Medium	Orange	
Crystal	Green	
Standard	Red	
Standard Plus	Purple	
Heavy	Blue	
Heavy Plus	Black	
Super Heavy		

Handling, Storage and Bundling of Pipes

No. of pipes packed in each Ashirvad bundle

Size (inch)	Type	Number of pipes in each bundle	Size (inch)	Type	Number of pipes in each bundle
1	Standard	20/25	3	Standard	05
$11 / 4$	Standard	$20 / 25$		Standard Plus	05
	Heavy	15 / 15		Heavy	05
	Super Heavy (optional)	15		Super Heavy	05
$11 / 2$	Standard	20/25	31/2	Heavy Plus	03
	Heavy	15 / 15	4	Standard	05
	Super Heavy (optional)	15		Standard Plus	03
2	Crystal	15		Heavy	03
	Standard	15		Super Heavy	03
	Heavy	10	5	Standard	03
	Super Heavy	10		Standard Plus	01
21/4	Heavy Plus	07		Heavy	01
$21 / 2$	Standard	10		Super Heavy	01
	Standard Plus	07	6	Heavy	01
	Heavy	07			Chart
	Super Heavy	05			

Proper handling of pipes

On receiving the pipes please check and inspect for any forms of transport damage due to shift in loads or improper handling/treatment. Visually examine the ends of pipes for any cracks or damage. Do not throw or drop the pipes to the floor. Do not drag or push the pipes from the truck bed. Contact of the pipes from any sharp object should be totally avoided.

Storage of pipes

- The pipes should preferably be stored indoors. When this is not possible please ensure that the bundles are covered to prevent exposure to sunlight, and to reduce the effect of UV rays.

- Maximum stacking height of pipes should be 7 feet.
- Place alternate layers of pipes at an angle of 90 degrees/ perpendicular to each other, with the first layer in a square shape.
- The pipes are stored on level ground-free of any sharp objects
- If pipes of same diameter but different classes are being stacked together, place the thicker pipes below, i.e. Stack heavy pipes below standard pipes.

- The surface should be dry.

Container details

Each length of bundle is 3.3 m . Therefore a maximum of three stacks of bundles can be laid out in a 40 feet container as depicted in the image. The remaining spaces is used to keep the various accessories (top/bottom adaptor, pump guard, jigs etc).

40 Feet high cube container

Container details	In metre	In feet
Length	11.765	38.6
Width	2.35	7.7
Height	2.4	7.9

Important Tips

PIPE AND PUMP SAFEGUARD AGAINST DRY RUNNING

- In places where the yield of water from the bore well is less, the pump starts running dry after sometime. It may lead to heating the connected Ashirvad Riser / Drop pipe. A correct assessment of bore yield should be done and a timer switch should be used so that pump shuts off automatically after a certain amount of preset time, and again starts automatically as per the setting of the timer. This will ensure that water is always present in the bore well and pump does not run in dry condition.
- During pump dry running the submersible pump gets heated up, and may damage the first connected Ashirvad Riser / Drop Pipe. Another way of handling pump dry running, is to use 3 metres of steel pipe in the bottom connected to the pump so that the heated pump is in contact with steel pipe, which inturn will dissipate the heat.
- The dry running condition may also be tackled by installing a hand-operated valve at the top of the bore well, and keeping it partially open, so as to limit the water flow.

Note: Whenever there is a dry running and pump over heating problem, there is a chance of deformation in the first pipe which is connected to the pump.

- Incase any other pipe other than the first pipe bulges or deforms then it is clearly a case of wrong selection of pipes for the pump.
- In extreme cases, where pump is in dry running condition resulting in excess heat in the bottom most pipe and also in cases, where water is to be pumped at an elevated temperature, specific solutions may be obtained from the company.

PREVENTION OF WATER HAMMER

- It is suggested out of experience to make a 3 mm hole in the pump NRV for deep bore wells of 500 feet and above. Due to this, water hammering will not take place in the bottom pipe at the time of pump stoppage and all the pipes will remain safe.
- A non return valve can also be installed at the Top pipe to prevent the water hammer. But when the non return valve is installed the hole in the pump NRV should not be made.

IN-WELL BORE WELLS

In some cases inwell borewells may be required. Care is to be taken to minimise vibrations. It is suggested to use flexible pipes from the bottom of the open well.

INCLINED BORE WELLS

Special precautions are to be taken in case of inclined bore wells. uPVC column pipes are generally not recommended for such applications.

Pipe Selection

Standard	$1^{\prime \prime}, 1-1 / 4^{\prime \prime}, 1-1 / 2^{\prime \prime}$	upto	100 mm Sub Pump
	$2^{\prime \prime}, 2-1 / 2^{\prime \prime}$ \& $3^{\prime \prime}$	upto	150 mm Sub Pump
	$3^{\prime \prime}, 4^{\prime \prime}$ \& 5"	upto	200 mm Sub Pump
	4", 5"	upto	250 mm Sub Pump
Standard Plus	$21 / 2^{\prime \prime}$	upto	150 mm Sub Pump
	$3^{\prime \prime}, 4 \prime$ \& 5"	upto	200 mm Sub Pump
	4" \& 5"	upto	250 mm Sub Pump
Heavy	$1-1 / 4^{\prime \prime}, 1-1 / 2^{\prime \prime}, 2^{\prime \prime}, 2-1 / 2^{\prime \prime}$	upto	100 mm Sub Pump
Heavy Plus	$21 / 4^{\prime \prime}$	upto	150 mm Sub Pump
	31/2"	upto	200 mm Sub Pump
Super Heavy	3", 4" \& 5"	upto	200 mm Sub Pump
	$4 " \& 5$ "	upto	250 mm Sub Pump

Chart: 9

Selection of Pipes

The hydrostatic allowable pressure of the selected pipe should always be greater than pump delivery pressure. For every 33 ft or 10 meters in the column above the pump, there is pressure drop of $1 \mathrm{~kg} /$ $\mathrm{cm}{ }^{2}$.

Calculation Example

Pump delivery pressure $25 \mathrm{~kg} / \mathrm{cm}^{2}$
Pipe size (Nominal Bore 50 mm) (2")
Standard pipe allowable pressure $=20 \mathrm{~kg} / \mathrm{cm}^{2}$
Heavy pipe allowable pressure $=27 \mathrm{~kg} / \mathrm{cm}^{2}$
(more than $25 \mathrm{~kg} / \mathrm{cm}^{2}$ pump pressure)
Therefore pipe to be selected is heavy pipe, not standard. Note: The pump delivery pressure will always remain $25 \mathrm{~kg} / \mathrm{cm}^{2}$ at the pump discharge point, irrespective of the depth of installation. Therefore, irrespective of the depth of installation, this pump require heavy pipes.

Pump Delivery Pressure: This is the max. delivery head of the pump. In the pump performance chart, the value of head at which delivery becomes nil (zero) is the max. head in metres. 10 metres of head is equivalent to $1 \mathrm{Kg} / \mathrm{cm}^{2}$. Sometimes the delivery head per stage of pump is not mentioned. In this case, the factor is to be multiplied with total stage to arrive at the max. pump delivery head.

Installation Guide

Step 1:

Join the bottom adaptor with submersible pump with the help of a chain wrench.

Step 2:
Before joining the pipes, ensure to clean the threads with clean water.

Step 3:
Before joining the pipes, ensure that the pump guard is installed properly.

Step 4:
Before opening or joining the pipe/adaptor ensure to hold the coupling by hand.

Step 5a/5b:
Tighten pipe with hand till half rubber ring is seen. Finally if required, give a last jerk with a belt wrench.

Step 6:
At the time of lowering Ashirvad pipes, place the clamp below the coupler. Clamp the top adaptor with the last pipe.

Step 7:
Lower the pipes with the help of chain pully.

SAFETY PRECAUTION:-

We strongly recommend our customers not to apply grease on the square thread pipe joints, while fastening two column pipes together. Grease / vegetable oil is not compatible with Ashirvad uPVC column pipe. Grease is a semisolid lubricant. In general grease consists of a soap emulsified with mineral or vegetable oil.

The degree of chemical attack on any material is influenced by a number of variable factors including concentration of the chemical, temperature, aeration, duration of exposure, stability of the fluid and possible chemical reactions with other compounds in the area.

Use pure water or soap water (soaps are called toilet soaps, used for hand washing) for column pipe fastening.

Accessories - Top and Bottom Adaptors/Connectors

Ashirvad Pipes also supplies Ashirvad marked bottom and top adaptors for fitment with Drop / Riser Pipes. Bottom adaptors are available in cast iron and stainless steel for connecting the bottom pipe with the submersible pump. Top adaptors are available in MS, CI and SS. Our threads are in 11 TPI. Bottom thread of the bottom adaptor and Top thread of the Top adaptor are 11 TPI.

However, for customization of these threads, please refer the drawings.
Note: Different length accessories is required for 2" to 6" Standard Plus, Heavy and Super Heavy as compared to standard pipes due to longer thread lengths.

TOP ADAPTORS / CONNECTORS
Top adaptors are available in MS Seamless / Cast iron / Stainless Steel and are used to connect the Riser / Drop top pipe with bend fitting.

CI top ordinary without flange
Sizes: $1^{\prime \prime}, 11 / 4^{\prime \prime}, 1112^{\prime \prime}, 2^{\prime \prime}, 21 / 2^{\prime \prime}$, 3" \& 3" long
Length: $140 \mathrm{~mm}-251 \mathrm{~mm}$
Cl top with flange single clamp
Sizes:
$1^{\prime \prime}, 1 \frac{114^{\prime \prime}}{}, 11 / 2^{\prime \prime}, 2^{\prime \prime}, 2^{1 / 2 \prime \prime}$, 3", 4"
Length: 140 mm-143 mm

With flange and double coupling length

Sizes:	$1^{\prime \prime}, 11 / 4^{\prime \prime}, 11 / 2^{\prime \prime}, 2^{\prime \prime}, 2^{11 / 2}$
	3", 4", 5"
Length:	236 mm-312

Reducing bottom type

Sizes: $\quad 114^{\prime \prime} \times 1^{\prime \prime}, 11 / 2^{\prime \prime} \times 11^{\prime \prime} 4^{\prime \prime}$, $1 \frac{112 "}{}{ }^{\prime \prime} \times 1^{\prime \prime}, 2^{\prime \prime} \times 1 \frac{1}{1 / 2^{\prime \prime}}$, $21 / 2^{\prime \prime} \times 21 / 4_{1 / 2 "} 2^{1 / 2^{\prime \prime}} \times 2^{\prime \prime}$, $3^{\prime \prime} \times 2^{1 ⁄ 22^{\prime \prime}}, 4^{\prime \prime} \times 3$ 3", $5^{\prime \prime} \times 4$ "
Length: $107 \mathrm{~mm}-178 \mathrm{~mm}$

Expander

Sizes:
1 " $\times 1 \frac{11 / 4^{\prime \prime}, 11 / 4 " \times 112 " \text {, }}{}$
$11^{\prime \prime} \times 2^{\prime \prime}, 2^{\prime \prime} \times 21 / 2^{\prime \prime}$,
$212^{\prime \prime} \times 3^{\prime \prime}, 3^{\prime \prime} \times 4$ ", 4 " $\times 5$
Length: $158 \mathrm{~mm}-213 \mathrm{~mm}$

BOTTOM ADAPTORS /
 CONNECTORS

Without flange
Sizes: $\quad 1^{\prime \prime}, 1 \frac{1}{4 \prime \prime}, 1 \frac{1122^{\prime \prime}}{}, 2^{\prime \prime}, 21 / 2^{\prime \prime}$,
3", 4", 5"
Length: $156 \mathrm{~mm}-256 \mathrm{~mm}$

SS Bottom 1.5 times

Sizes: $\quad 11 / 4^{\prime \prime}, 1 \frac{11 / 2^{\prime \prime}}{}$
Length: 183 mm

Note: During every removal of pump for maintenance, both top and bottom adaptors should be carefully checked for corrosion, rusting etc. and if found unsuitable, should be replaced immediately.

Bottom adaptors are available in Cast Iron / Stainless Steel and are used to connect the bottom pipe with the pump.

Accessories - Jigs and Fixtures

Abstract

JIGS Inner and outer jigs are used for extraction of pump from bore well incase of bore well collapse or pump jamming due to boulders, small pieces of stones etc. These jigs have been designed by Ashirvad Pipes to help retrieve the pump out of the bore well in difficult conditions.

INNER JIG
Sizes : $1^{\prime \prime}, 1^{11 / 4^{\prime \prime}}, 1^{112} 2^{\prime \prime}, 2^{\prime \prime}, 2^{1 / 2 \prime}, 3^{\prime \prime}, 4^{\prime \prime}$

OUTER JIG
Sizes: $11 / 4^{\prime \prime}, 11 / 2^{\prime \prime}, 2 ", 21 / 2^{\prime \prime}, 3^{\prime \prime}, 4^{\prime \prime}$

FIXTURES

A lowering fixture has been developed by Ashirvad Pipes for lowering or extracting the Riser / Drop pipes from Borewell. The fixtures are from 1" to 6" size to be tightened on the coupler side.

LOWERING FIXTURE
Sizes: $1^{\prime \prime}, 1^{11 / 4^{\prime \prime}}, 1^{11 / 2 \prime}, 2^{\prime \prime}, 2^{11 / 2 \prime}, 3^{\prime \prime}, 4^{\prime \prime}, 5^{\prime \prime}, 6 "$

Pump Guard

A pump guard is used between the bottom pipe and bottom adaptors, and is recommended for areas with excessive pump vibration due to sand pumping, sub standard pumps and other local conditions. Photographs of pump guard is shown here below.

ASSEMBLY PHOTO OF BOTTOM ADAPTOR PUMP GUARD AND PIPE.

ADAPTORS

Medium / Crystal / Standard / Standard Plus / Heavy / Heavy Plus

TOP ADAPTORS - HSN CODE: 7307
Cl Top without Flange

P1	Size (inch)	Part No.
	$\mathbf{1}$	3811001
	$\mathbf{1 1} / \mathbf{4}$	3811002
	$\mathbf{1 1 / 2}$	3811003
$\mathbf{2}$	3811004	
	$\mathbf{2 1 1 2}$	3811005
$\mathbf{3}$	3811006	

CI Top with Flange Single Clamp

1	381101	
	$\mathbf{1} 1 / 4$	3811102
	$\mathbf{1} 1 / 2$	3811103
$\mathbf{2}$	3811104	
	$\mathbf{2}$	3811105
	$\mathbf{4}$	3811106

CI Top with Flange Double Clamp

SS Top with Flange Double Clamp

Expander MS Top (Super heavy)

CI Bottom Long

Cl Bottom

| \|c| | $\mathbf{1}$ | 3816001 |
| :---: | :---: | :---: |
| | $\mathbf{1 1 / 4}$ | 3816002 |
| | $\mathbf{1} / \mathbf{2}$ | 3816003 |
| | $\mathbf{2}$ | 3816004 |
| | $\mathbf{2 1 / 2}$ | 3816005 |
| | $\mathbf{3}$ | 3816006 |
| | $\mathbf{5}$ | 3816007 |

BOTTOM ADAPTORS - HSN CODE: 7307
Cl Bottom with Flange

Reducer Bottom

11/4-1	3819001
11/2-1	3819002
11/2-11/4	3819003
2-11/2	3819004
21/2-2	3819005
3-21/2	3819006
4-3	3819007
5-4	3819008

Expander Bottom

1-11/4	3819101
$11 / 4-11 / 2$	3819102
11/2-2	3819103
2-21/2	3819104
21/2-3	3819105
3-4	3819106
4-5	3819107

Expander SS Bottom

Expander SS Bottom (Super heavy)

SS Reducer Bottom (Super heavy)

$5 \mathrm{~F}=9$	Size (inch)	Part No.
	11/4-1	2195009
	$11 / 2-1 / 1 / 4$	2195010
	2-11/2	2195011

ACCESSORIES - HSN CODE: 7307
Inner Jig

	$\mathbf{1}$	3817001
	$\mathbf{1 1 1 / 4}$	3817002
	$\mathbf{1 1 1 2}$	3817003
	$\mathbf{2}$	3817004
	$\mathbf{2 1 1 2}$	3817005
	$\mathbf{3}$	3817006

Outer Jig

$\mathbf{1 1 / 4}$	3817102
$\mathbf{1 ¹ / 2}$	3817103
$\mathbf{2}$	3817104
$\mathbf{2 1 / 2}$	3817105
$\mathbf{3}$	3817106

Lowering Jig

1	3717201
$11 / 4$	3817202
11/2	3817203
2	3817204
21/2	3817205
3	3817206
4	3817207

Belt

Wrench

Multi Seal Ring / Gaskets - HSN CODE: 4016

Multi Seal Ring / Gaskets (Super heavy)

Pump Guard Set - MS Flange - HSN CODE: 7307

	Size (inch)	Part No.
	$\mathbf{1}$	3818101
	$\mathbf{1 1 1 / 4}$	3818102
	$\mathbf{1 1 ⁄ 2}$	3818103
	$\mathbf{2}$	3818104
	$\mathbf{2 1 1 / 2}$	3818105
	$\mathbf{3}$	3818106
	$\mathbf{4}$	3818107
	$\mathbf{5}$	3818108

Pump Guard Set - SS Flange

	$\mathbf{1}$	3818111
	$\mathbf{1 1 1 / 4}$	3818112
	$\mathbf{1 ¹ / 2}$	3818113
	$\mathbf{2}$	3818124
	$\mathbf{2 1 1 2}$	3818125
	$\mathbf{3}$	3818126
	$\mathbf{4}$	3818127
	$\mathbf{5}$	3818128

Pump Guard Set - SS Rod

	$\mathbf{1}$	3810101
	$\mathbf{1 1 ⁄ 4}$	3810101
	$\mathbf{1 ¹ / 2}$	3810101
	$\mathbf{2}$	3810102
	$\mathbf{2 1} / 2$	3810102
	$\mathbf{3}$	3810102
	$\mathbf{4}$	3810103
	$\mathbf{5}$	3810113

Pump Guard Set - PVC Small Piece

	1	2110001
\square	$11 / 4$	2110002
	$11 / 2$	2110003
	2	2110004
	21/2	2110005
	3	2110006
	4	2110007
	5	2110008

SUPER HEAVY ADAPTORS \& ACCESSORIES
HSN CODE: 7307

Super Heavy - MS Top

	Size (inch)	Part No. (Manufacturing)	Part No. (Trading)
	$\mathbf{1 1 / 4}$	2193102	3813102
	$\mathbf{1 ¹ / 2}$	2193103	3813103
	$\mathbf{2}$	2193104	3813104
	$\mathbf{2 1 / 2}$	2193105	3813105
	$\mathbf{3}$	2193106	3813106
	$\mathbf{5}$	2193207	3813207
		2193209	3813209

Super Heavy - SS Top

Super Heavy - SS Bottom

	Size (inch)	Part No. (Manufacturing)	Part No. (Trading)
	$\mathbf{1 1 / 4}$	2194102	3814102
	$\mathbf{1 1 / 2}$	2194103	3814103
	$\mathbf{2}$	2194104	3814104
	$\mathbf{2 1 1 2}$	2194105	3814105
	$\mathbf{3}$	2194106	3814106
	$\mathbf{4}$	2194207	3814207
	$\mathbf{5}$	2194208	3814208
	2194209	3814209	

Super Heavy - SS Rod \& SS Flange

		SS Rod	SS Flange
	$\mathbf{1 1 1 / 4}$	3810111	3818122
	$\mathbf{1 1 / 2}$	3810112	3818123
	$\mathbf{2}$	3810104	3818124
	$\mathbf{2 1 / 4}$	3810104	3818130
	$\mathbf{2 1 / 2}$	3810104	3818125
	$\mathbf{3}$	3810104	3818126
	$\mathbf{4}$	3810105	3818127
	$\mathbf{5}$	3810107	3818128

Super Heavy - PVC Small Piece - HSN CODE: 3917

	11/4	2110102
	11/2	2110103
	2	2110104
	21/4	2110100
	21/2	2110105
	3	2110106
	4	2110107
	5	2110108

Wide Range to Suit Different Pump Delivery Heads

Technical Details	Pipe Size	(1") OD: 33mm ND: 25 mm	(11/4") OD: 42mm ND: 32 mm	(11/2") OD: 48 mm ND: 40mm	(2") OD: 60 mm ND: 50 mm	(21/2") OD: 75 mm ND: 65 mm	(3") OD: 88mm ND: 80 mm	(4") OD: 113 mm ND: 100 mm	(5") OD: 140 mm ND: 125 mm	(6") OD: 165 mm ND: 150 mm
Safe Total Pump Delivery Head (m)	V4-15	150	150	150	-	-	-	-	-	-
	Crystal	210	210	210	170	-	-	-	-	-
	Standard	300	250	260	200	160	170	150	160	-
	Standard Plus	-	-	-	-	210	210	210	210	-
	Heavy	-	350	350	270	260	260	260	260	260
	Super Heavy	-	400	400	350	350	350	350	350	-

Technical Details	Pipe Size	(1") OD: 33 mm ND: 25 mm	(11/4") OD: 42 mm ND: 32 mm	(11/2") OD: 48mm ND: 40mm	(2") OD: 60mm ND: 50 mm	(21/2") OD: 75 mm ND: 65 mm	(3") OD: 88mm ND: 80mm	(4") OD: 113 mm ND: 100 mm	(5") OD: 140 mm ND: 125 mm	(6") OD: 165 mm ND: 150 mm
Safe Allowable Hydrostatic Pressure (kg/cm ${ }^{2}$)	V4-15	15	15	15	-	-	-	-	-	-
	Crystal	21	21	21	17	-	-	-	-	-
	Standard	30	25	26	20	16	17	15	16	-
	Standard Plus	-	-	-	-	21	21	21	21	-
	Heavy	-	35	35	27	26	26	26	26	26
	Super Heavy	-	40	40	35	35	35	35	35	-

Frequently Asked Questions

1. Why only Ashirvad uPVC Drop / Riser pipes? Ashirvad Pipes is an ISO 9001-2008 company accredited by a leading quality registrar. It has innovated and developed several new products to suit the customer's requirements and these products are well accepted across the country. Ashirvad has a well developed distributor, dealer and service network in India and in several countries worldwide.
2. What are the benefits of uPVC pipes over steel / Gl pipes?
Savings on (a) Cost of pipes (b) Handling time (c) Power (d) Water discharge upto 30\% higher (e) Working life of pipes is much more (f) Zero maintenance.
3. How does it affect on the quantity and quality of water?
Due to smooth internal surface, friction is low and therefore we get more water. Over a period of use, the steel pipes get corroded, rusted and the water quality deteriorates. In Ashirvad uPVC pipes, since there is no corrosion or rust throughout the depth of column pipe, the water quality remains good.
4. Can we compare the strengh of uPVC pipes with a steel pipe?
The specific gravity of UPVC is $1.4-1.45 \mathrm{gm} / \mathrm{cm}^{3}$ where as that as steel has $8 \mathrm{gm} / \mathrm{cm}^{3}$. Taking the strength of the material into consideration, the pipes are optimally designed to make them light without any compromise in their strength requirements.
5. Can uPVC pipes take load of the pump?

Ashirvad Drop / Riser pipes are designed to hold several times the weight of entire column filled with water and pump assembly. All type of pumps of different sizes have been considered and the Ashirvad Drop / Riser pipes are made accordingly in the class of V4-12.5, V4-15, Crystal, Standard, Standard Plus, Heavy and Super Heavy.
6. Up to what depth can the pipes be lowered?

The pipes may be used after careful selection based on pump delivery head and maximum allowable pressure in the pipes. The depth of the bore well may differ from place to place depending upon the water level in the bore well. Ashirvad offers a range of pipes to suit the
customer's requirement of various depths and they have been successfully used up till 1200 ft . Proper selection of Ashirvad pipes can be made for various depth application after a careful study of the pump pressure and the technical booklet.
7. Does Drop / Riser pipes need full casing in the bore?
These pipes give the best service in borewells which have full casing or borewells which are free from loose boulders and stones. In such areas where loose boulders and stones are prevalent then full casing or slightly larger bore should be made so that the pump does not get stuck. Bore collapse problem occurs in some areas and it can be tackled by giving full casing pipes. This happens in areas with loose soil and silt. Care should be taken during drilling of the borewell so that it is vertically down without any bend.
8. What should be the bore size with respect to the outside diameter of the pump?
For bore wells without casing pipe, specially in areas with loose boulders present in the bore, it is suggested that the borewell size should be minimum 2" more than the pump outer diameter. This is to prevent pump getting stuck up due to small boulders. For borewells with casing, a minimum gap of $11 / 2^{\prime \prime}$ between the Casing internal diameter and pump outer diameter is required.
9. How to choose from a range of pipes offered? Right selection of pipes can be made after consulting technical leaflets on the basis of pump and pipe discharge pressure.
10. Why is there a variation in thickness of the pipes?
The pipe thickness of the barrel has been designed by taking the pump weight, water column weight and pump delivery pressure into consideration. The end of the pipes are made thicker so that even after making the threads and removal of material the same barrel thickness remains under the threads so that the strength of pipe can be maintained equal in end and barrel.
11. Are the pipes breakable?

The pipes do not break under normal handling conditions.
12. What happens if a bore collapses?

The pump and the pipes can be pulled out only in cases where the pump can be pulled out by applying a force within the ultimate breaking strength of the pipe as mentioned in the chart. Normally the strength is adequate. In case of severe bore collapse and boulder problems even steel pipes cannot be retrieved from the bore.
13. What about after sales service?

Specially trained and fully equipped dealers are capable of providing all types of service support at both national and international level.
14. Is tripod required for lowering?

Yes, tripod is required specifically with Riser / Drop pipes in the installation of V 6 and V 8 pump sets, considering the heavy load requirements. However it is important to note that handling of uPVC pipes is much simpler in comparison to steel pipes.
15. How to tighten the pipes?

The pipe is tightened on the principle of screw system. Tighten the pipe with hand and rope (holding the coupler) so that the rubber seal fully enters in to the coupling pipe. Pictures of installation appear in page no. 14.
16. Any adhesives required during joining of pipes? No solvent or adhesive required.
17. Do we need extra rope to hold the pipes? No rope is required. Pipe has adequate strength.
18. Can we cut the pipes?

No, pipes cannot be cut for short length requirement. Special request has to be made to the company. The company does however stock shorter length of 1.5 M of few standard running sizes, which can be made available on demand.
21. Can we use any other metal adaptors?

The quality of Ashirvad adaptors are carefully checked in the lab for (a) Value of hardness (b) Quality of casting (c) Blow holes and other casting defects (d) Thickness (e) Properly designed threads.
Hence, it is suggested that only accessories supplied by Ashirvad should be used.
22. Why to use a pump guard?

Areas with a excessive sand pumping or defective unbalanced pump results in excessive vibration in the bottom which may lead to pipe breakage near the adaptor. Pump guard has been designed to be used in these type of areas and problems so that even after breakage of Riser / Drop pipes the pumps can be easily retrievable.
23. How to select a top adaptor?

Top adaptors with flange are generally used in deep bore wells so that the flange on top may be used as a support to hold the column. With even higher depths and bigger pump assembly, top adaptor flange type with double coupling length may be used so that two pipe clamps may be used on top to support the column load. For low depth bore well top adaptor without flange may also be used.
24. What makes Ashirvad column pipes the first choice?
Ashirvad has more than 40 years of expertise in the field of PVC pipe processing. The team of Ashirvad comprises of a fully dedicated engineering department to cater to the technical needs of the product. This product has been conceived, designed, developed and marketed for the first time by Ashirvad in the world. Ashirvad understands the customer requirements and converts them into products, which have proven track record and mass acceptance all over the country.
19. Can we re-thread the pipes?

Under normal use, re-threading of pipe will not be required. Special threads cannot be made at site.
20. Can metal pipe join with uPVC pipe?

Metal pipe can be connected with the uPVC only with use of Ashirvad marked adaptors due to different threads.

TM \& PATENT: Any unauthorized use, copying, manufacturing etc. of the similar product or technology of the invention protected will attract legal actions including, imprisonment or fine under relevant IP laws - Printed in 2019 • All rights reserved. No part of this publication may be copied, modified, reproduced in any material from (including photocopying or storing it in any medium by electronic means and whether or not transiently or incidentally to some other use of this publication) without the written permission of the copyright owner. Applications for the copyright owner's written permission to reproduce any part of this publication should be addressed to the copyright owner. Warning: The doing of an unauthorized act in relation to a copyright work may result in both a civil claim for damages and criminal prosecution. Disclaimer: Due care and diligence has been taken while editing and printing the book. Neither the author nor the publishers of the book hold any responsibility for any mistake that may have inadvertently crept in. Publishers shall not be liable for any direct, consequential, or incidental damages arising out of the use of the book. In case of binding mistake, misprints, or for missing pages etc. - Printed and bound in India. Moral Rights of the Author are asserted • The copyright owner reserves all rights and liberty to modify, change or alter the design drawings of the products as and

All rights reserved copyright © 2019 Ashirvad Pipes Private Limited

Ashirvad Pipes Pvt. Ltd., 4-B, Attibele Industrial Area, Hosur Road, Bengaluru - 562 107, Karnataka, INDIA. $\mathbf{T}+918028061000 / 28061700$ F +9180 28061080 M +919902333 333 E export@ashirvad.com

SMART WATER MANAGEMENT PLUMBING. SANITARY.AGRICULTURE
by aliaxis

